
Exploring the LED Cipher
Dhruv Deshmukh1, Jyotika Mahapatra1 and Nikhil Chaudhary1

Indian Institute of Technology, Bhilai, India
dhruvr@iitbhilai.ac.in

jyotikam@iitbhilai.ac.in
nikhilch@iitbhilai.ac.in

Abstract. In this paper we analyse the LED Cipher.
We discuss the construction of LED Cipher and try to illustrate it using various
diagrams. We further analyse its Sbox and crypt analyze the LED Cipher. Finally we
briefly discuss about the implementation and application developed using the cipher.
Keywords: Lightweight · block cipher · cryptanalysis

1 Introduction
With the onset of IoT there has been increase in number of small devices with computational
powers. These small devices are a part of larger systems and communicate with each other.
There is a need for cipher implementations that can be used in these devices for security
of communication and storage. Since the devices have limited computational power and
memory the cipher implementations need to be lightweight. Light Encryption Device,
LED is one such cipher that is based on the AES architecture but encodes smaller block
size of 64-bits instead of the standard size of 128-bits. In our term paper we investigate
this cipher and produce our results.

The term paper consists the analysis of the DDT and LAT for the S-box used in the
cipher and their properties like differential-uniformity, differential branch number. We then
present the differential and integral cryptanalysis as well as the try to model automated
cryptanalysis for one round. Throughput the paper we have endeavoured to represent
everything in form of neat diagrams that make it easy to understand our work. Apart
from this you can find the implementation of this cipher done by us in Python on github.
We also have provided different modes of operation like cbc, ctr, etc in our implementation.
Finally, we have built a voice chat application in Python that uses the LED cipher for
encryption and decryption.

The major differences between AES and LED are in the block size encoded, the key
schedule, the mix columns operation and the use of round constants. LED has implemented
these components such that the cipher is lightweight and uses hardware more efficiently.
We will go over these differences in detail in the next session where we explain the design
of this cipher.

2 Design and Specification
One round of cipher encryption includes AddRoundKey and then the round function. The
round function consists of four steps which are:

1. Add Constants

2. Sub Cells

mailto:dhruvr@iitbhilai.ac.in
mailto:jyotikam@iitbhilai.ac.in
mailto:nikhilch@iitbhilai.ac.in

2 Exploring the LED Cipher

3. Shift Rows

4. Mix Columns serial

Below is the overview of the 4 steps:

Figure 1: 4 steps in the round function of LED

The number of rounds depends on the key-size. For 64 bit keys the total number of
rounds is 8 and for 128 bits number of rounds is 12.

Dhruv Deshmukh, Jyotika Mahapatra and Nikhil Chaudhary 3

Before going into the details of these steps we need to get know how the sub-keys for
each round are obtained so let us understand the key schedule. The key schedule is quite
simplistic in LED. Here we give the formula for generating j-th cell of i-th sub-key:

ski
0 ski

1 ski
2 ski

3
ski

4 ski
5 ski

6 ski
7

ski
8 ski

9 ski
10 ski

11
ski

12 ski
13 ski

14 ski
15

ski
j = k(j+i∗16 mod l)

where k is the initial key and l is the length of the key in nibbles. Using this we show the
sub-keys obtained for a 64-bit and 128-bit initial keys.

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

sub-keys for 64-bit initial key

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31

sub-keys for 128-bit initial key

Thus in the 64-bit case all the sub-keys will be same and equal to the initial key
provided while in case of 128-bit key the sub-keys will alternate between the 16 MSB of
key and 16 LSB of the key depending on the round number i. The thing to note here is
that the key bits are organized in the row major order instead of the column major order
used in the AES and the same is true for the message as well. This is done considering
that the row major form is more hardware friendly. Thus the plaintext matrix can be
visualized as:

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

64-bit plaintext m, m0||m1||...||m14||m15

The AddRoundKey operation just XORs i-th round sub-key with the state matrix
and the result is given below:

ski
0

⊕
m0 ski

1
⊕

m1 ski
2

⊕
m2 ski

3
⊕

m3
ski

4
⊕

m4 ski
5

⊕
m5 ski

6
⊕

m6 ski
7

⊕
m7

ski
8

⊕
m8 ski

9
⊕

m9 ski
10

⊕
m10 ski

11
⊕

m11
ski

12
⊕

m12 ski
13

⊕
m13 ski

14
⊕

m14 ski
15

⊕
m15

4 Exploring the LED Cipher

Add constants: The round constant is used differently in the LED construction.
Instead of using it in the key schedule the round constant is directly XORed with the state
in this step. The matrix XORed with the state in this step is given below:

0
⊕

(ks7||ks6||ks5||ks4) rci
5||rci

4||rci
3 0 0

1
⊕

(ks7||ks6||ks5||ks4) rci
2||rci

1||rci
0 0 0

2
⊕

(ks3||ks2||ks1||ks0) rci
5||rci

4||rci
3 0 0

3
⊕

(ks3||ks2||ks1||ks0) rci
2||rci

1||rci
0 0 0

The ks is the key size in bits. We divide it into 4 MSB and 4 LSB and use them in first
column in matrix shown above. The initial value of round constant is 0 then for subsequent
rounds we generate the constant as follows. Shift current round constant left by one and
new value of bit rc0 = rc5

⊕
rc4

⊕
1

(rci
5||rci

4||rci
3||rci

2||rci
1||rci

0) = (rci−1
4 ||rci−1

3 ||rci−1
2 ||rci−1

1 ||rci−1
0 ||rci−1

5 ⊕ rci−1
4) ⊕ 1

Sub Cells: For this operation the nibbles in each cell are substituted using the S-box
given below.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Shift Rows: The shift rows operation is exactly same as the AES shift rows with i-th
row shifting left by i places in a circular fashion. The diagram is given below for better
visualization:

Mix Columns Serial: The concept of this operation is same as AES mix columns
but the matrix is used is different. Also, keeping in mind the hardware efficiency the
implementation is not just matrix multiplication but instead the matrix chosen is such
that it is the 4 power of a special matrix which is easy to implement in hardware. This
special matrix is thus applied 4 times in succession to get the desired output. The matrix
is given below. One application of this matrix shifts all columns up by one and puts a
linear combination of all elements in a column as the new last element of that column.
When this is done 4 times we get a state that is mixed well.

3 Analysis of the DDT and LAT and comparison with other
ciphers

DDT

Dhruv Deshmukh, Jyotika Mahapatra and Nikhil Chaudhary 5

in/out 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

LAT
in/out 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -4 0 -4 0 0 0 0 0 -4 0 4
2 0 0 2 2 -2 -2 0 0 2 -2 0 4 0 4 -2 2
3 0 0 2 2 2 -2 -4 0 -2 2 -4 0 0 0 -2 -2
4 0 0 -2 2 -2 -2 0 4 -2 -2 0 -4 0 0 -2 2
5 0 0 -2 2 -2 2 0 0 2 2 -4 0 4 0 2 2
6 0 0 0 -4 0 0 -4 0 0 -4 0 0 4 0 0 0
7 0 0 0 4 4 0 0 0 0 -4 0 0 0 0 4 0
8 0 0 2 -2 0 0 -2 2 -2 2 0 0 -2 2 4 4
9 0 4 -2 -2 0 0 2 -2 -2 -2 -4 0 -2 2 0 0
A 0 0 4 0 2 2 2 -2 0 0 0 -4 2 2 -2 2
B 0 -4 0 0 -2 -2 2 -2 -4 0 0 0 2 2 2 -2
C 0 0 0 0 -2 -2 -2 -2 4 0 0 -4 -2 2 2 -2
D 0 4 4 0 -2 -2 2 2 0 0 0 0 2 -2 2 -2
E 0 0 2 2 -4 4 -2 -2 -2 -2 0 0 -2 -2 0 0
F 0 4 -2 2 0 0 -2 -2 -2 2 4 0 2 2 0 0

Comparison with other ciphers
Cipher Name SBox Size Differential Uniformity Differential Branch Number

Midori 4-bit 4 2
GIFT 4-bit 6 2

Serpent 4-bit 4 3
Prince 4-bit 4 2
Pride 4-bit 4 2
Ascon 5-bit 8 3
Klein 4-bit 4 2

PHOTON-beetle 4-bit 4 3
LED 4-bit 4 3

Elephant 4-bit 4 3
Wage 8-bit 8 2
Aria 8-bit 4 2

Primates APE 5-bit 2 2
Skinny 4-bit 2 2
Print 3-bit 2 2

6 Exploring the LED Cipher

The values of our sbox seem to be in the middle among the 4-bit sboxes. Differential
uniformity is 2,4 or 6 while branch number is 2 or 3.

4 Differential and Integral Cryptanalysis
4.1 Differential Cryptanalysis
For differential cryptanalysis, 2 plaintexts are taken such that the difference activates the
cells as follows.

First 2 columns of sk5 is guessed and the states are retraced back as shown above. The
selected cells are then used to check if they follow the same pattern. If not then the guess
can be discarded.

4.2 Integral Cryptanalysis
The set P = {P0, P1,P15} such that the first nibble of each plain text is unique and
the set covers all possible values. Therefore the set P follows property as follows :

Dhruv Deshmukh, Jyotika Mahapatra and Nikhil Chaudhary 7

Where A is the all property and C is constant.
Similar to AES the A and C property is preserved after XOR with round key. As Round
constant addition too is XORing bitwise, the properties remain the same. The results are
same for Sub-cells and Shift rows too as they were in the case of AES. For Mix column
serial we observe the following for Pi where i = 0 to 15 :

As i covers the All property and 4i, 8i, Bi, 2i vary to take all possible 16 values, the entire
column gains All property. In the third round after the MCS, it is observed that Balanced
property is acquired similar to AES since the only difference during XOR are the constants
multiplied which do not have a influence over all.

First 4 nibbles of sk4. The Balanced property should hold true at the respective
positions as shown in figure-2, this can be used as the distinguish-er too.
Probability of the 4 positions being balanced is (2−4)4. With 216 guesses, number of
guesses passing the condition is 1, thus the sub-key space reduces to 1.

8 Exploring the LED Cipher

Data Complexity :
1 set of 24 plain text required. Thus the data complexity is 24 chosen plain texts.
Time Complexity:
1 round of decryption is done for each 216 guesses and 24 cipher texts. Thus the computa-
tional cost = 1 ∗ 216 ∗ 24 = 220 round functions. This is equivalent to 220

4 = 218 four round
LED computation.
It is repeated for the remaining three columns. Thus total time complexity is 4 ∗ 218 = 220

4 round LED computations.
Memory:
As the subkey space gets reduced to 1 in a single iteration thus the memory complexity is
negligible.

5 Automated Cryptanalysis
The main thing we have to model constraints for is the SBOX as the add constants and
add round key do not change the output difference. In our case the state is of 16 nibbles
and in the SubCells operation they get substituted using the SBOX. Hence in our case
we constraints for 16 sboxes each of which has 4 input bits and 4 output bits. Let the
16 sboxes be given variables Ai,j where i is for denoting the round number and j is the
position of sbox within the state. The variable is one when it receives non-zero input
difference i.e. the sbox is active and 0 otherwise. Let input bits of the state be denoted
by xin

i,k and xout
i,k where i denotes the round number, k denotes the bit number ranging

from 0 to 63 and input/output stand for input/output respectively. Now for an sbox Ai,j

the inputs and outputs are xin
i,4j+m and xout

i,4j+m where m ranges from 0 to 3. Now we will
show the sbox constraints for i-th round and j-th sbox and same will be applicable for all
the sboxes. The constraints are as follows:

1. Sbox is active if atleast one of the input bits to it are active

xin
i,4j+m − Ai,j ≤ 0 ∀m ∈ {1, 2, 3, 4}

2. When sbox is active then one of the input bits is one

xin
i,4j+0 + xin

i,4j+1 + xin
i,4j+2 + xin

i,4j+3 − Ai,j ≥ 0

3. Input difference must result in output difference and vice versa

xout
i,4j+0 + 4xout

i,4j+1 + 4xout
i,4j+2 + 4xout

i,4j+3 − xin
i,4j+0 + xin

i,4j+1 + xin
i,4j+2 + xin

i,4j+3 ≥ 0

xin
i,4j+0 + 4xin

i,4j+1 + 4xin
i,4j+2 + 4xin

i,4j+3 − xout
i,4j+0 + xout

i,4j+1 + xout
i,4j+2 + xout

i,4j+3 ≥ 0

Also the input bit now will go through the shift rows and mix columns operation and
then go to second round. Thus each input bit for a round is the linear combination of
output bits from the previous round. For example let us write this relation for the first
input bit for i-th round:

xin
i,0 = xout

i−1,2 ⊕ xout
i−1,20 ⊕ xout

i−1,41 ⊕ xout
i−1,61

Similarly we can write for other bits but the relations will be more complicated. Thus
keeping the above constraints in mind we can model automated cryptanalysis for one
round and then repeat them for the subsequent rounds.

Dhruv Deshmukh, Jyotika Mahapatra and Nikhil Chaudhary 9

6 Brief on Software implementation and application
We have implemented the cipher in Python. Apart from just the block encryption and
decryption functions we have provided functions for different modes of operation like cbc,
pcbc, cfb, ofb, and ctr. Also, we have function for iv generation. Finally we use hmac to
ensure integrity of message. Using this cipher we have made simple vault application. In
this there is folder called vault. The files in this folder are encrypted and only the person
with the key will able to decrypt them and view them.

7 Conclusion
In this paper we explored about the LED cipher. We made an effort to make its design
clear by explaining the steps through the use of multiple diagrams. We analysed the DDT
and LAT of the our cipher and used it for trying out differential and integral cryptanalysis
on it. We also compared the DDT with that of other ciphers on the basis of properties
like differential branch number and uniformity and found our cipher had decent values. IN
automated cryptanalysis section we tried to model one round of the cipher using an MILP
optimisation problem. Finally we briefly dicussed about our software and application
implementation.

8 References
1. LED paper

2. Our software implementation

https://eprint.iacr.org/2012/600.pdf
https://github.com/CrYpTo-DuCkS/LED_Cipher_Term_paper

	Introduction
	Design and Specification
	Analysis of the DDT and LAT and comparison with other ciphers
	Differential and Integral Cryptanalysis
	Differential Cryptanalysis
	Integral Cryptanalysis

	Automated Cryptanalysis
	Brief on Software implementation and application
	Conclusion
	References

